
A Generalized Framework for Process-informed
Nonstationary Extreme Value Analysis

Elisa Ragnoa, Amir AghaKouchaka, Linyin Chengb, Mojtaba Sadeghc

aDepartment of Civil and Environmental Engineering, University of California, Irvine,
USA.

bDepartment of Geosciences, University of Arkansas, Fayetteville, AR 72701, USA
cDepartment of Civil Engineering, Boise State University, ID, USA.

Abstract

Evolving climate conditions and anthropogenic factors, such as CO2 emissions,

urbanization and population growth, can cause changes in weather and climate

extremes. Most current risk assessment models rely on the assumption of sta-

tionarity (i.e., no temporal change in statistics of extremes). Most nonstationary

modeling studies focus primarily on changes in extremes over time. Here, we

present Process-informed Nonstationary Extreme Value Analysis (ProNEVA) as

a generalized tool for incorporating different types of physical drivers (i.e., un-

derlying processes), stationary and nonstationary concepts, and extreme value

analysis methods (i.e., annual maxima, peak-over-threshold). ProNEVA builds

upon a newly-developed hybrid evolution Markov Chain Monte Carlo (MCMC)

approach for numerical parameters estimation and uncertainty assessment. This

offers more robust uncertainty estimates of return periods of climatic extremes

under both stationary and nonstationary assumptions. ProNEVA is designed

as a generalized tool allowing using different types of data and nonstationarity

concepts physically-based or purely statistical) into account. In this paper, we

show a wide range of applications describing changes in: annual maxima river

discharge in response to urbanization, annual maxima sea levels over time, an-

nual maxima temperatures in response to CO2 emissions in the atmosphere, and
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precipitation with a peak-over-threshold approach. ProNEVA is freely available

to the public and includes a user-friendly Graphical User Interface (GUI) to

enhance its implementation.

Keywords: Process-informed Nonstationary Extreme Value Analysis,

Physical-based covariates/drivers, Methods for nonstationary analysis.

1. Introduction

Natural hazards pose significant threats to public safety, infrastructure in-

tegrity, natural resources, and economic development around the globe. In re-

cent years, the frequency and impacts of extremes have increased substantially

in many parts of the world (e.g., Melillo et al., 2014; Coumou & Rahmstorf,5

2012; Alexander et al., 2006; Mazdiyasni et al., 2017; Mallakpour & Villarini,

2017; Hallegatte et al., 2013; Wahl et al., 2015; Vahedifard et al., 2016; Jong-

man et al., 2014; AghaKouchak et al., 2014). For this reason, there is a great

deal of interest in understanding how extreme events will change in the future.

Historical observations are the main source of information on extremes (Klemeš,10

1974; Koutsoyiannis & Montanari, 2007) and statistical models are used to in-

fer frequency and variability of extremes based on historical records (e.g., Katz

et al., 2002).

Statistical models used to study extremes can be broadly categorized into

two groups: stationary and nonstationary (e.g., Salas & Pielke Sr, 2002; Coles15

& Pericchi, 2003; Griffis & Stedinger, 2007; Obeysekera & Salas, 2013; Serinaldi

& Kilsby, 2015; Madsen et al., 2013; Koutsoyiannis & Montanari, 2015). In a

stationary model, the observations are assumed to be drawn from a probability

distribution function with constant parameters (i.e., statistics of extremes do

not change over time or with respect to another covariate). In a nonstation-20

ary model, however, the parameters of the underlying probability distribution

function change over time or in response to a given covariate (Sadegh et al.,

2015).

Water resources practices (e.g., flood and precipitation frequency analysis)
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have traditionally adopted stationary models. However, over the past decades,25

increasing surface temperatures (e.g., Barnett et al., 1999; Villarini et al., 2010;

Melillo et al., 2014; Diffenbaugh et al., 2015; Fischer & Knutti, 2015; Mazdiyasni

& AghaKouchak, 2015), more intense rainfall events (e.g., Zhang et al., 2007;

Villarini et al., 2010; Min et al., 2011; Marvel & Bonfils, 2013; Westra et al.,

2013; Cheng et al., 2014; Fischer & Knutti, 2016; Mallakpour & Villarini, 2017),30

changes in river discharge (e.g., Villarini et al., 2009a,b; Hurkmans et al., 2009;

Stahl et al., 2010), and sea level rise (e.g., Holgate, 2007; Haigh et al., 2010;

Wahl et al., 2011) have been observed and to a great extent attributed to an-

thropogenic activities (e.g., human-caused climate change, urbanization).

Matalas (1997) argued that trend in hydrological records cannot firmly be35

established because of the variables intrinsic variability and limited length of

observations. In his reasoning, the observed trend might only be part of a

slow oscillation. Consequently, Matalas (1997) defined hydrological trends as

“real (physical)” or “perceived (statistical)”. Even though using statistical trend

analysis tools inevitably leads to detecting only statistical trends, it is important40

to make a distinction between a trend which has a physical explanation (e.g.,

increases in runoff in response to urbanization) and a trend which cannot be

fully explained by our understanding of the underlying processes. Regardless

of the type of observed hydrologic trends, i.e. in response to a physical process

or only perceived (statistical), these trends challenge the stationary assumption45

(Milly et al., 2008).

Several studies have promoted the idea of moving away from stationary

models to ensure capturing the changing properties of extremes (Milly et al.,

2008). However, some have criticized this viewpoint particularly because the

assumption of nonstationarity implies adding a deterministic component in the50

stochastic process, which must be justified by a well-understood process (Kout-

soyiannis, 2011; Matalas, 2012; Lins & Cohn, 2011; Koutsoyiannis & Montanari,

2015). Moreover, limited observations could affect the exploratory diagnostics

used to justify a nonstationary model (Serinaldi & Kilsby, 2015). This can

potentially lead to higher uncertain in the results of extreme value analysis.55
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A nonstationary approach may also involve an assumption on the evolution of

the relevant process/variable in the future which would add to the overall un-

certainty (Serinaldi & Kilsby, 2015). When it is not possible to determine a

credible prediction of the future Koutsoyiannis & Montanari (2015) or make

a reasonable assumption, considering a stationary model may be a more ap-60

propriate solution. Luke et al. (2017) concluded that for prediction of river

discharge, a stationary model should be preferred to avoid over-extrapolation

in the future. However, when information about alterations occurred within a

watershed is known, then an updated stationary model which accounts for the

detected changes should be adopted (Luke et al., 2017). In the debate around65

model assumptions, Montanari & Koutsoyiannis (2014) noted that more ef-

forts should focus on including relevant physical processes in stochastic models,

and suggested stochastic-process-based models as a way to bridge the gap be-

tween physically-based models without statistics and statistical models without

physics.70

Here, we propose a generalized framework named Process-informed Nonsta-

tionary Extreme Value Analysis (ProNEVA) in which the nonstationarity com-

ponent is defined by a temporal or process-based dependence of the observed

extremes on an explanatory variable (i.e., a physical driver). Here, Process-

informed refers to the process of incorporating a physical driver into a statistical75

analysis, when there is evidence that the physical driver can alter the statistics

of the extremes. Even though the approach proposed is purely data-driven, it

encourages and facilitates the implementation of informed statistical analysis in

light of external knowledge of processes, especially for water resources manage-

ment and risk assessment. For example, ProNEVA can be used for analyzing80

changes in extreme temperatures as a function of CO2 emissions. It is widely

recognized that higher amount of CO2 in the atmosphere results in a warmer

climate (e.g., Zwiers et al., 2011; Fischer & Knutti, 2015; Barnett et al., 1999).

For this reason, CO2 emissions can be considered a physical covariate for ex-

plaining temperature extremes. Other examples include temperature or large85

scale climatic circulations as covariates for rainfall, and CO2 concentration or
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temperature as covariates for sea level rise.

2. Background and Method

2.1. Nonstationarity Extreme Value Analysis

Extreme Value Theory (EVT) provides the bases for estimating the mag-90

nitude and frequency of hazardous events (including natural and non-natural

extreme events) (Coles, 2001). Most applications utilize either the General-

ized Extreme Value distribution (GEV) or the Generalized Pareto distribution

(GP) for describing the behavior of extremes. The former is applied to the

annual maxima of a variable (e.g., a time series consisting of the most extreme95

daily rainfall from each year of the record), while the latter is used to describe

extremes above a predefined threshold (e.g., all independent river flow values

above the flood stage). Both GEV and GP allow incorporating nonstationarity

through varying parameters. Several studies have investigated methodologies

for testing the assumptions of stationarity and nonstationarity in hydrology,100

climatology, and earth system sciences (e.g., Katz et al., 2002; Sankarasubra-

manian & Lall, 2003; Cooley et al., 2007; Mailhot et al., 2007; Huard et al., 2009;

Villarini et al., 2009a; Towler et al., 2010; Villarini et al., 2010; Vogel et al., 2011;

Salas et al., 2012; Zhu et al., 2012; Willems et al., 2012; Katz, 2013; Obeysekera

& Salas, 2013; Salas & Obeysekera, 2014; Rosner et al., 2014; Yilmaz & Perera,105

2014; Mirhosseini et al., 2014; Cheng & AghaKouchak, 2014; Steinschneider &

Lall, 2015; Volpi et al., 2015; Krishnaswamy et al., 2015; Read & Vogel, 2015;

Sadegh et al., 2015; Mirhosseini et al., 2015; Mondal & Mujumdar, 2015; Lima

et al., 2015, 2016b,a; Sarhadi & Soulis, 2017; Salas et al., 2018; Yan et al., 2018;

Bracken et al., 2018; Ragno et al., 2018).110

A number of packages and software tools are currently available for nonsta-

tionary Extreme Value Analysis (EVA), including the R-package ismev (Gille-

land et al., 2013; Gilleland & Katz, 2016) where nonstationarity is modeled as a

linear regression function of generic covariates (Gilleland et al., 2013). extRemes

offers EVA capability and evaluates the underlying uncertainties with respect115
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to parameters (Gilleland & Katz, 2016). extRemes also allows tail-dependence

analysis and a declustering technique for peak over threshold analysis. The

package climextRemes (available also in Python) builds upon extRemes and in-

cludes an estimate of the risk ratio for event attribution analyses. R packages

vgam and gamlss are available for modeling nonstationarity through general-120

ized additive models (see for example Villarini et al. (2009a)). The package

GEVcdn estimates the parameters of a nonstationary GEV distribution using a

conditional density method (Cannon, 2010).

Cheng et al. (2014) developed a Bayesian-based framework, Nonstationary

Extreme Value Analysis (NEVA) toolbox that estimates the parameters of GEV125

and GP distributions and their associated uncertainty for time-dependent ex-

tremes (available in Matlab). In the nonstationary case, the parameters are

modeled as a linear function of time. NEVA also includes return level curves

based on the concept of expected waiting time (Wigley, 2009; Olsen et al., 1998;

Salas & Obeysekera, 2014) and effective return level (Katz et al., 2002). The130

package nonstationary Flood Frequency Analysis estimates the parameters of

the Log-Pearson Type III distribution as a linear function of time, based on

Bayesian inference approach (Luke et al., 2017). The tsEVA toolbox imple-

ments the Transformed-Stationary (TS) methodology described in Mentaschi

et al. (2016), which comprises of, first, a transformation of a nonstationary time135

series into a stationary one, so that the stationary EVA theory can be applied,

and then a reverse-transformation of the results to include the nonstationary

components in the GEV and the GP distributions.

Despite significant advances, a comprehensive framework which incorporates

the widely used EVA statistical models, namely GP, GEV, and LP3, under140

both stationary and nonstationary assumptions (parameters as a function of

time or a physical covariates) is not available. Moreover, the implementation of

newly proposed approaches for return period estimation under the nonstation-

ary assumption is still limited. To address the above limitations, we present

ProNEVA, which builds upon NEVA package (Cheng et al., 2014) but expands145

to a general nonstationary extreme value analysis. Indeed, in addition to station-
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ary EVA, ProNEVA allows nonstationary analyses using user-defined covariates,

which could be time or a physical variable. Figure 1 depicts the core structure

of ProNEVA. The advantage of performing stationary analysis with physical-

related covariates resides in the possibility of imposing physical constraints to a150

statistical model. Even though such a statistical model (nonstationary statisti-

cal model) is purely data-driven, it can be constrained using physical informa-

tion to avoid unrealistic extrapolation.

ProNEVA offers parameter estimation, uncertainty quantification, and a

comprehensive assessment of the goodness of fit. The key features of ProNEVA155

are described as follows: (a) the model includes the most common distribution

functions used for extreme value analysis including the GEV, GP, and LP3 dis-

tributions; (b) for nonstationary analysis, the users can select both the covariate

and the choice of function for describing change in parameters; (c) the covariate

can be any user-defined physical covariate; (d) the model also includes a default160

time-covariate (i.e., describing change over time without a physical covariate);

(e) the function describing change in parameters with respect to the covari-

ate can be linear, exponential, or quadratic; (f) the users can select the GP

distribution threshold (peak-over-threshold) as a constant value or as a linear

quantile regression function of the choice covariate; (g) ProNEVA estimates the165

distribution parameters based on a Bayesian inference approach; (h) the model

allows using a wide range of priors for parameters including the uniform, normal,

and gamma distributions; (i) ProNEVA samples the posterior distribution func-

tion of the parameters using a newly-developed hybrid evolution Markov Chain

Monte Carlo (MCMC) approach, which is computationally more efficient than170

traditional MCMC algorithms searching rugged response surfaces and it pro-

vides a robust numerical parameter estimation and uncertainty quantification

(Sadegh et al., 2017); (j) different model diagnostics and model selection indices

(e.g., RMSE, AIC, BIC) are implemented to provide supporting information; (k)

ProNEVA includes exploratory data analysis tools such as the Mann-Kendall175

test for monotonic trends and the White test for homoscedasticity in time se-

ries; (l) in addition to the source code, a Graphical User Interface (GUI) for
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ProNEVA is also available for easier implementation (see Supplementary Ma-

terial); finally, (m) ProNEVA is intended for a broad audience and hence it is

structured such that users can easily customize and modify it based on their180

needs. We acknowledge that there are other EVA methods, such as those in

Serago & Vogel (2018) and Gilleland & Katz (2016), that we have not included

in ProNEVA.

In the reminder of the paper, a detailed description of ProNEVA is provided.

Four different example applications are presented with different variables (e.g.,185

precipitation, sea level, temperature, river discharge) and different covariates

(time, CO2 emissions in the atmosphere, urbanization). ProNEVA can be used

for analyzing annual maxima (also known as block maxima) using the GEV and

LP3 distributions, and peak over threshold (POT) or partial duration series

using the GP distribution. In the following, we provide a brief overview of the190

extreme value models and their parameters.

2.2. Generalized Extreme Value (GEV)

The GEV distribution function is used to model time series of block maxima.

The National Oceanic and Atmospheric Administration (NOAA), for example,

derives precipitation Intensity-Duration-Frequency (IDF) curves based on the195

GEV distribution. This distribution is also widely used in other fields including

finance, seismology, and reliability assessment (bridge performance assessment

(e.g., Ming et al., 2009)). The GEV cumulative distribution function is (Coles,

2001):

ΨGEV (x) = exp
{
−
(

1 + ξ ·
(x− µ

σ

))− 1
ξ
}

(1)

for ξ ·
(
x−µ
σ

)
> 0. µ, σ, and ξ are the parameters of the distribution: µ is the200

location parameter, σ > 0 is the scale parameter, and ξ is the shape parameter

which defines the tail behavior of the distribution.

The stationary GEV model can be extended for dependent series by letting

the parameters of the distribution be a function of a general covariate xc, i.e.,

µ(xc), σ(xc), ξ(xc), (Coles, 2001). Hence, the nonstationary form of eq. 1 is205
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Figure 1: Flowchart representing the core structure of the Matlab Toolbox ProNEVA

9



described as:

ΨGEV (x|xc) = exp
{
−
(

1 + ξ(xc) ·
(x− µ(xc)

σ(xc)

))− 1
ξ(xc)

}
(2)

In ProNEVA, for each of the three parameters, the users can select a func-

tion to describe the change in the parameters with respect to the covariate xc

(Table S1 - Supplementary Material). The function selected for each parameter

does not constrain the functional relationship used for the other parameters.210

To ensure the positivity of the scale parameter, σ(xc) is modeled in the log-

scale (Coles, 2001; Katz, 2013). Consequently, the exponential function is not

available for σ(xc). Moreover, the shape parameter ξ(xc) is known to be a diffi-

cult parameter to precisely estimate even in the stationary case, (Coles, 2001),

especially for short time series, (Papalexiou & Koutsoyiannis, 2013). For this215

reason, only the linear function is included for ξ(xc).

2.3. Generalized Pareto (GP)

The GP distribution is used for modeling time series sampled based on the

POT method. The GP distribution has been applied to precipitation (e.g., De

Michele & Salvadori, 2003), earthquake data (e.g., Pisarenko & Sornette, 2003),220

wind speed (Holmes & Moriarty, 1999), and economic data (e.g., Gençay &

Selçuk, 2004), among others. Given a sequence Y of independent and random

variables, for a large enough threshold u, the cumulative distribution function

of the excesses Ye = Y − u, conditional on Y > u, is approximated by the GP

distribution function, (Coles, 2001):225

ΨGP (ye) = 1−
(

1 + ξ ·
(ye
σ

))− 1
ξ

(3)

In particular, if block maxima of Y follows a GEV distribution, then the thresh-

old excesses Ye have a GP distribution in which the parameter ξ is equal to the

parameter ξ of the corresponding GEV distribution (Coles, 2001).

In the nonstationary model of the GP distribution, both the threshold value

and the parameters of the distribution can be modeled as a function of the230
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user-covariate xc, (Coles, 2001).

ΨGP (ye|xc) = 1−
(

1 + ξ(xc) ·
(ye(xc)
σ(xc)

))− 1
ξ(xc)

(4)

Where Ye(xc) = Y − u(xc). Analogous to the GEV case, ProNEVA allows

incorporating different functional forms for describing change in parameters

over time or with respect to a covariate (Table S2).

The same considerations for the GEV parameter functional forms are applied235

to GP distribution too. In addition, the users can specify the type of threshold

u. Two quantile-based options are available: constant or linear. In the case of a

linear threshold, a linear regression quantile model is adopted. The α-regression

quantile function is (Koenker & Bassett, 1978; Kyselý et al., 2010)

Ỹ = M ·U(α) + r+ − r− (5)

where 0 < α < 1 is the quantile, Ỹ is the column vector of n-observations,240

M = [Xc In ] with Xc being the column vector of covariance and In the n-

identity vector, U = [u1 u0 ]′ is the vector of the regression coefficients, and r+

and r− are respectively the positive and negative parts of the residuals. Then,

U(α) is calculated as the optimal solution to eq. 6 (Koenker & Bassett, 1978;

Kyselý et al., 2010).245

α · In′ · r+ + (1− α) · In′ · r− := min (6)

2.4. Log-Pearson Type III (LP3)

The LP3 distribution has been widely used in hydrology for flood frequency

analysis particularly after the release of the USGS Bulletin 17B (U.S. Water

Resources Council, 1982). However, it has been applied to other studies, such

as design magnitude of earthquakes (Gupta & Deshpande, 1994) and evaluation250

of apple bud burst time and frost risk (Farajzadeh et al., 2010).

The LP3 distribution characterizes the random variable Q = exp(X), given

that X follows a Pearson type III (P3) distribution (Griffis et al., 2007). Here-

after, the natural logarithm is used, however any base can be implemented, such
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as base-10 as in Bulletin 17B (Griffis et al., 2007). The P3 probability density255

function is

ψP3(x) =
1

|β| · Γ(α)
·
(x− τ

β

)α−1
· exp

(
− x− τ

β

)
(7)

defined for α > 0, (x − τ)/β > 0, and Γ(α) being a complete gamma function

(Griffis et al., 2007). The parameters α, β, and τ are functions of the first three

moments, µX , σX , γX , (Griffis et al., 2007):

α = 4/γ2X (8)

β = (σX · γX)/2 (9)

τ = µX − 2 · (σX/γX) (10)

In the case of nonstationary analysis, the first three moments are modeled as a260

function of the user-defined covariate xc (Table S3). The GEV and GP consider-

ations mentioned above hold for the functions to describe change in parameters.

ψP3(x|xc) =
1

|β(xc)| · Γ(α(xc))
·
(x− τ(xc)

β(xc)

)α(xc)−1
· exp

(
− x− τ(xc)

β(xc)

)
(11)

3. Parameter Estimation: Bayesian Analysis and Markov Chain Monte

Carlo Sampling

ProNEVA estimates the parameters of the selected (non)stationary EVA dis-265

tribution using a Bayesian approach, which provides a robust characterization

of the underlying uncertainty derived from both input errors and model selec-

tion. Bayesian analysis has been widely implemented for parameter inference

and uncertainty quantification (e.g. Thiemann et al., 2001; Gupta et al., 2008;

Cheng et al., 2014; Kwon & Lall, 2016; Sarhadi et al., 2016; Sadegh et al., 2017;270

Luke et al., 2017; Sadegh et al., 2018).

Let θ be the parameter of a given distribution and let Ỹ = {ỹ1, . . . , ỹn} be the

set of n observations. Following Bayes theorem, the probability of θ given Ỹ

(posterior) is proportional to the product of the probability of θ (prior) and the

probability of Ỹ given θ (likelihood function). Assuming independence between275

the observations:
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p(θ|Ỹ) ∝
n∏
i=1

p(θ) · p(ỹi|θ) (12)

The prior brings a priori information, which does not depend on the ob-

served data, into the parameter estimation process. The choice of the prior

distribution, then, is subjective, and it is based on prior beliefs about the sys-

tem of interest (Sadegh et al., 2018). The available prior options in ProNEVA280

include the uniform, normal, and gamma distributions, providing a variety of

possibilities. ProNEVA assumes independence of parameters and hence, each

parameter requires its own prior.

In the case of a nonstationary analysis, the vector of parameters θ includes

a higher number of elements than in the stationary case, depending on the285

functional form selected for each of the distribution’s parameters.

The posterior distribution is then delineated using a hybrid-evolution MCMC

approach proposed by Sadegh et al. (2017). The MCMC simulation searches

for the region of interest with multiple chains running in parallel, which share

information on the fly. Moreover, the hybrid-evolution MCMC benefits from290

an intelligent starting point selection (Duan et al., 1993) and employs Adaptive

Metropolis (AM) (Roberts & Sahu, 1997; Haario et al., 1999, 2001; Roberts &

Rosenthal, 2009), differential evolution (DE) (Storn & Price, 1997; Ter Braak

& Vrugt, 2008; Vrugt et al., 2009), and snooker update (Gilks et al., 1994; Ter

Braak & Vrugt, 2008; Sadegh & Vrugt, 2014) algorithms to search the feasible295

space. The Metropolis ratio is selected to accept/reject the proposed sample,

and the Gelman-Rubin R̂ (Gelman & Rubin, 1992) is selected to monitor the

convergence of the chains, which should remain below the critical threshold of

1.2. For a more detailed description of the algorithm, the reader is referred to

Sadegh et al. (2017).300

4. Model Diagnostics and Selection

The purpose of fitting a statistical model, whether it is stationary or non-

stationary, is to characterize the population from which the data was drawn
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for further analysis/inference (Coles, 2001). Hence, it is necessary to check the

performance of the fitted model to the data (Coles, 2001). We implemented dif-305

ferent metrics in the ProNEVA for goodness of fit (GOF) assessment and model

selection including: quantile and probability plots for a graphical assessment (see

Supplementary Material), two-sample Kolmogorov-Smirnov (KS) test, Akaike

Information Criterion (AIC), Bayesian Information Criterion (BIC), Maximum

Likelihood (ML), Root Mean Square Error (RMSE), and Nash-Sutcliff Effi-310

ciency (NSE) coefficient. The hybrid-evolution MCMC approach (Sadegh et al.,

2017) within the Bayesian framework provides an ensemble of solutions for the

(non)stationary statistical model fitted to the data. ProNEVA uses the best set

of parameters, θ̂, which maximizes the posterior distribution. Marginal poste-

riors will then provide uncertainty estimates of the estimated parameters.315

4.1. Standard Transformation

When applied to nonstationary applications, the lack of homogeneity in the

distributional assumption requires an adjustment to the traditional GOF tech-

niques (Coles, 2001). Consequently, ProNEVA standardizes the observations

based on the underlying distribution family such that the GOF tests can be320

performed. Table S4 provides information on the transformation methods in

ProNEVA. However, it is worth noting that the choice of the reference distribu-

tion is arbitrary (Coles, 2001). Here, we selected those transformations that are

widely accepted in the literature (Coles, 2001; Koutrouvelis & Canavos, 1999).

In the case of a LP3 distribution, the transformation can only be applied when325

the parameter α is constant (Koutrouvelis & Canavos, 1999). Based on eq.

8, this implies that the transformation can be performed only in the case of

constant skewness γX .

4.2. Kolmogorov-Smirnov Test

The two-sample Kolmogorov-Smirnov (KS) test is a non-parametric hypoth-330

esis testing technique which compares two samples, Z(1) and Z(2), to assess

whether they belong to the same population (Massey, 1951). Being FZ(1)(z)
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and FZ(2)(z) the (unknown) statistical distributions of Z(1) and Z(2) respec-

tively, the null-hypothesis H0 is FZ(1)(z) = FZ(2)(z), against alternatives. The

KS test statistic D∗ is:335

D∗ = max
z

(|FZ(1)(z))− FZ(2)(z)|) (13)

H0 is rejected when the pvalue of the test is equal to or exceeds the selected α-

level of significance, e.g., 5%. We implemented the KS test in ProNEVA as one

of the methods to test the goodness-of-fit of the model. Specifically, ProNEVA

generates 1000 random samples from the fitted statistical distribution or, in

the case of a nonstationary analysis, from the reference distribution. Then, the340

KS test is performed between the random samples and the input (original or

transformed) data. Finally, the rejection rate (RR), eq. 14, is provided as a

GOF index.

RR =

∑
(H0 rejected)

1000
(14)

4.3. Model Selection based on Model Complexity

A model showing desirable level of performance efficiency with the minimum345

number of parameters, i.e., a parsimonious model (Serago & Vogel, 2018), is

usually preferred over a model with similar performance but more parameters -

e.g, a nonstationary model with more parameters relative to a simpler stationary

model (Serinaldi & Kilsby, 2015; Luke et al., 2017). Consequently, ProNEVA

evaluates different GOF metrics (i.e., AIC, BIC), which account for the number350

of parameters within the numerical model.

The Akaike Information Criterion (AIC) (Akaike, 1974, 1998; Aho et al., 2014)

is formulated as follows

AIC = 2 · (D − L̂) (15)

where D is the number of parameters of the statistical model and L̂ is the log-

likelihood function evaluated at θ̂. The model associated with a lower AIC is355

considered a better fit.

The Bayesian Information Criterion (BIC) (Schwarz, 1978) is defined as

BIC = D · ln(N)− 2 · L̂ (16)
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where N is the length of records. Similar to AIC, the model with lower BIC

results a better fit.

4.4. Model Selection based on Minimum Residual360

Root Mean Square Error (RMSE) and Nash-Sutcliff Efficiency (NSE) coef-

ficient are two metrics widely used in hydrology and climatology as GOF mea-

surements (Sadegh et al., 2018). The focus of both is to minimize the residuals.

The vector of residual is defined as

RES =
((
F̂−1

( 1

n+ 1

)
−z(1)

)
, · · · ,

(
F̂−1

( i

n+ 1

)
−z(i)

)
, · · · ,

(
F̂−1

( n

n+ 1

)
−z(n)

))
;

(17)

following the same notation used for defining the quantile plot. Hence,365

RMSE =

√∑n
i=1RES

2
i

n
(18)

NSE = 1−
∑n
i=1RES

2
i∑n

i=1(z(i) −mean(z))2
(19)

A perfect fit is associated with RMSE = 0 and NSE = 1, given RMSE ∈

[0, inf) and NSE ∈ [− inf, 1).

5. Predictive Distribution

The primary objective of a statistical inference is to predict unobserved370

events (Renard et al., 2013). EVA, for example, provides the basis for esti-

mating loads for infrastructure design and risk assessment of natural hazards

(e.g., floods, extreme rainfall events). Considering a Bayesian viewpoint, the

predictive distribution can be written as (Renard et al., 2013):

f(z|Ỹ) =

∫
f(z, θ|Ỹ) · dθ =

∫
f(z|θ) · f(θ|Ỹ) · dθ (20)

where Ỹ is the observed data, z is a grid at which f(z|Ỹ) will be evaluated,375

θ is the vector of parameters, f(z|θ) is the probability density function (pdf)

of the selected distribution (i.e., GEV, GP, LP3), and f(θ|Ỹ) is the posterior

distribution function. The predictive distribution function relies on the fitted
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distribution function over the parameter space, and uses the posterior distri-

bution for uncertainty estimation (Renard et al., 2013). In practice, eq. 20380

often cannot be derived analytically. Therefore, Renard et al. (2013) suggest to

numerically evaluate it using the MCMC-derived ensemble of solutions sampled

from the posterior distribution. The probability density of the kth-element of

the vector z is:

f̂(zk|Ỹ) =
1

Nsim
·
Nsim∑
i=1

f(zk|θi) (21)

In the nonstationary case, the predictive pdf is a function of the covariate,385

since the distribution parameters depend on the covariates. For this reason,

ProNEVA provides the predictive pdf for a number of predefined values of the

covariates.

6. Return Level Curves under Nonstationarity

Given a time series of annual maxima, the Return Level (RL) is defined as390

the quantile Qi for which the probability of an annual maximum exceeding the

selected quantile is qi (Cooley, 2013). For example, let’s assume that annual

maxima of precipitation intensities P = p1, · · · , pn have probability distribution

FP . The quantile Qi is the value of precipitation intensity such that Pr(P ≥

Qi) = 1 − FP (Qi) = qi. Under the stationary assumption, the characteristics395

of the statistical model are constant over time, meaning that the probability

qi of the quantile Qi does not change on a yearly basis. In this context, the

concept of Return Period (RP) of the quantile Qi is defined as the inverse of

its exceedance probability, Ti = 1/qi in years. Referring back to the example

of annual maxima of precipitation intensities P , let’s assume that Qi is the400

precipitation intensity quantile such that the probability of being exceeded in

each given year is Pr(P ≥ Qi) = 1−FP (Qi) = 0.01. Then, the RP of Qi (or RL)

is Ti = 1/qi = 1/0.01 = 100 in years. Under the stationary assumption, there

is a one-to-one relationship between RL and RP (Cooley, 2013). Therefore, the

RL curves are defined by the following points:405 ((
Ti;Qi

)
, Ti > 1 yr, i = 1, · · ·

)
(22)
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RL curves are traditionally used for defining extreme design loads for infras-

tructure design and risk assessment of natural hazards. However, in a non-

stationary context both RP and RL terms become ambiguous (Cooley, 2013)

and numerous studies have attempted to address the issue. For nonstationary

analysis, ProNEVA integrates two different proposed concepts: the expected410

waiting time (Salas & Obeysekera, 2014), for default time-covariate only, and

the effective RL curves (Katz et al., 2002).

6.1. Effective Return Level

Katz et al. (2002) proposed the concept of effective design value (or effective

return level), which is defined as q-quantile, Q, varying as a function of a given415

covariate (i.e, time or physical). Therefore, for a constant value of RP = 1/q,

where q is the yearly exceedance probability, the effective RL curves is defined

by the points ((
xc, Qq(xc)

)
, q ∈ [0, 1]

)
(23)

where xc is the covariate, and Qq(xc) is the q-quantile.

6.2. Expected Waiting Time420

Wigley (2009) first introduced the concept of waiting time, i.e., the expected

waiting time until an event of magnitude Qi is exceeded, in which the probability

of exceedance in each year, qi, changes over time. Olsen et al. (1998) and, later,

Salas & Obeysekera (2014) provided a comprehensive mathematical description

of the suggested concept.425

The event Qq0 is defined as the event with the exceedance probability at time

t = 0 equal to q0. Under nonstationary conditions, at time t = 1 the probability

of exceedance of Qq0 will be q1, at time t = 2, it will be q2, and so on. Given

the selected statistical model FQ with characteristics θt, qt = 1 − FQ(Qq0 , θt).

Hence, the probability of the event to exceed Qq0 at time m is given by (Salas430

& Obeysekera, 2014):

f(m) = qm ·
m−1∏
t=1

(1− qt) (24)
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where f(1) = q1 and f(m) = 1. The cumulative distribution function (cdf) of a

geometrical distribution (eq. 24) is:

FX(x) =

x∑
i=1

f(i) =

x∑
i=1

qi ·
i−1∏
t=1

(1− qt) = 1−
x∏
t=1

(1− qt) (25)

where x is the time at which the event occurs, x = 1, · · · , xmax, FX(1) = q1,

and FX(xmax) = 1. Therefore, the expected waiting time (or RP) in which for435

the first time the occurring event exceeds Qq0 can be derived as

T = E(X) =

xmax∑
x=1

x · f(x) =

xmax∑
x=1

x · px
x−1∏
t=1

(1− pt) (26)

Cooley (2013) simplifies eq. (26) as:

T = E(X) = 1 +

xmax∑
x=1

x∏
t=1

(1− pt) (27)

which gives the return period under nonstationary conditions, and it is con-

sistent with the definition of RP in the stationary case (Salas & Obeysekera,

2014).440

7. Explanatory Analysis: Mann-Kendall and White Tests

With the intention of providing explanatory data analysis, ProNEVA in-

cludes two different tests: the Mann-Kendall (MK) monotonic trend test and

the White Test (WT) for evaluating homoscedasticity in the records. These

tests can be used to decide whether to incorporate a trend function in one or445

more of the model parameters or not (i.e., deciding whether to use a station-

ary or nonstationary model). However, these tests are optional and are not an

integral part of ProNEVA. The selection of a stationary versus a nonstationary

analysis is untied from the tests results, but it is left to the users. For more

details about the MK and WT, the readers is referred to the Supplementary450

Material and the references therein.
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8. ProNEVA Graphical User Interface (GUI)

The framework here presented has also a Graphical User Interface (GUI),

Figure 2, which we believe can promote and facilitate the application of ProNEVA.

The User Manual included in the package will provide the user with all the in-455

structions needed.

Figure 2: ProNEVA Graphical User Interface (GUI). 1) Interface for uploading data and

selecting the choice of distribution (GEV/GP/LP3) and model (stationary/nonstationary)

type; 2) Interface specific to the choice of distribution for selecting priors and nonstationarity

model; 3) Interface for selecting MCMC information and additional operations (e.g., additional

exploratory analyses, saving results, plotting options).

9. Results

As previously discussed, the changes in extremes observed over the past

years can stem from changes in different physical processes. In order to account

for the observed changes, we need statistical tools that are able to incorporate460

those variables causing variability, which can be represented as time-covariate
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or a physical-based covariate. In the following, we show example applications

of ProNEVA under both stationay and nonstationary assumptions including

modeling changes induced by different types of covariates (both temporal and

process-based changes). It is important to point out that for statistical anal-465

yses, under both the stationary and nonstationary assumptions, the quality of

information (i.e., length of record, representativeness of observations), is funda-

mental. Generally, the more information is available, the more confident we can

be about our inferences (and also whether or not a model is representative for

the application in hand). However, often observations of extremes are limited.470

The issue of data quality and availability of covariates is also as important for

nonstationary analysis. For all application, representativeness of the choice of

model should be rigorously tested using different goodness-of-test methods.

In the first application, we analyze discharge data from Ferson Creek (St.

Charles, IL), which has experienced intense urban development over the years.475

Urbanization has a direct effect on the amount of water discharged at the catch-

ment outlet, since it increases impervious surfaces. For this reason, we use a

process-informed nonstationary LP3 model for fitting discharge data, in which

the covariate is represented by percent of urbanized catchment area. The second

application involves temperature maxima data averaged over the Contiguous480

United States. Many studies have shown that the amount of CO2 in the atmo-

sphere causes temperatures to increase. For this reason, we fit a nonstationary

GEV model to temperature data, in which the covariate is represented by CO2

emissions in the atmosphere to include the underlying physical relationship.

In the third application, we investigate sea level annual maxima in the city of485

Trieste (Italy), which has increased over the years. In this case, we adopted a

temporal nonstationary GEV model. The last application involves precipitation

data for New Orleans, Louisiana, in which we fit a stationary GP model, given

that there is no evidence of change in statistics of extremes.
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9.1. Application 1: Modeling discharge with urbanization as the physical driver490

Since 1980, Ferson Creek (St. Charles, IL) basin has experienced land use

land cover changes due to urbanization. The percent of urban areas within the

catchment has increased from 20% of the total basin’s area in 1980 to almost

65% in 2010. River discharge highly depends on the land use and land cover

of the basin as it determines the ratio of infiltration to direct runoff (Figure495

3). Here, urbanization can be considered as a known physical process that has

altered the runoff in the basin. To incorporate the known physical process,

we investigate annual maxima discharge of the Ferson Creek (station USGS

05551200) using a process-informed nonstationary LP3 model, in which the

covariate, xc, is the percent of urbanized area. LP3 is widely used for modeling

Figure 3: Application 1: Modeling discharge in Ferson Creek with urbanization as the physical

driver of change. a) Discharge data and percent of urbanization in the basin; b) Discharge

data as a function of urbanization.

500

discharge data (Bulletin 17B, U.S. Water Resources Council (1982)). We select a

nonstationary model in which the parameter µ is an exponential function of the

covariate xc. We adopt normal priors for the LP3 parameters. Figure 4.b shows

the results of the process-informed nonstationary analysis for an arbitrary value

of urbanized area, here 37%. For the sake of comparison, Figure 4.a displays505

the results when a stationary model is implemented. It is worth noting that the

nonstationary model (Figure 4.b) fits extreme discharge values (high values of

return period) better than the stationary model (Figure 4.a). While based on

the AIC and BIC diagnostic tests, the stationary model and the nonstationary

model perform rather similarly, the RMSE of the nonstationary model (25.06510

m3/s) is considerably lower than that of the stationary model (77.58 m3/s).
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Figure 4: ProNEVA results for Application 1: Modeling discharge in Ferson Creek with

urbanization as the physical driver of change. a) Return Level curves based on a stationary

model; b) Return Level base on a nonstationary model considering an urbanization area equal

to 37% of the catchment area; c) Expected return level curves, i.e. ensemble medians, under

stationary and nonstationary assumption; d) Effective return period, i.e. return period as a

function of the percent of urbanized area.
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Urbanization alters the runoff in the basin by reducing the amount of water

that infiltrates and increasing the amount of direct runoff. Figure 4.c shows

the ability of the statistical model to incorporate this physical process. As

anticipated, the expected (ensemble median) nonstationary return level curve515

associated with a 62% of urbanized area returns higher values of discharge than

the one associated with a 37% of urbanized area. For example, under the

nonstationary assumption, the magnitude of a 50-year event is 62.47 m3/s for

37% of urbanized area, similar to the stationary case. However, the magnitude

of the 50-year event increases to 78.11 m3/s (25% more) for 62% of urbanized520

area. On the contrary, the stationary analysis estimates a 50-year event as an

event with magnitude 63.74 m3/s, independent of the level of urbanization of

the catchment. The result demonstrates that a combination between statistical

concepts and physical processes is required for correctly estimating the expected

magnitude of an event. Figure 4.d displays the effective return level curves525

(Katz et al., 2002) which summarize the impact of urbanization on discharge

by describing return levels as functions of the selected covariate (x-axis).

9.2. Application 2: Modeling temperature with CO2 as the physical covariate

Over the past decades, many studies have reported increasing surface tem-

perature (e.g.: Zhang et al., 2006; Stott et al., 2010; Melillo et al., 2014; Zwiers530

et al., 2011), mainly due to anthropogenic activities as a consequence of increase

in greenhouse gasses concentration in the atmosphere. Therefore, we investigate

annual maxima surface temperature for the Contiguous United States available

from NOAA (NCDC archive - https://www.ncdc.noaa.gov/cag/national/

time-series) using a process-informed nonstationary GEV model in which535

the user-covariate is represented by CO2 emissions over the US (Figure 5.a).

Territorial fossil fuel CO2 emissions data are available on Global Carbon Atlas

http://www.globalcarbonatlas.org/en/CO2-emissions (Boden et al., 2017;

BP, 2017; UNFCCC, 2017). To incorporate the observed relationship between

temperature and CO2 in the statistical model (Figure 5.b), we select a model in540

which the location and the scale parameters of the GEV distribution are linear
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Figure 5: Application 2: Modeling temperature maxima with CO2 emissions as the physical

covariate. a) Temperature and CO2 time series; b) Annual temperature maxima as a function

of CO2 emissions in the atmosphere

functions of the covariate, while the shape parameter is constant. We assume

normal priors. Figure 6.b shows the results of the nonstationary model for a

value of CO2 equal to 4.9 GtCO2. For comparison, we also plot the results when

a stationary model is selected in Figure 6.a. One can see that the nonstationary545

model better captures the observed extreme events, particularly events associ-

ated with higher values of CO2. Moreover, the diagnostics tests confirm that

the nonstationary model is a better fit. For the nonstationary model, the AIC

and the BIC are 93.91 and 104.13, respectively. When the stationary model is

considered, both the AIC and BIC increase to 104.98 and 111.11, respectively.550

Lower values of AIC and BIC indicate a superior model performance. The ad-

vantage of the AIC and BIC for model selection is their ability to account for

the number of model parameters: models with more parameters are penalized.

Figure S1 shows the effective return level as a function of CO2 emissions. The

results show how temperature extremes change in response to the increasing555

CO2 emissions (here, the physical covariate). For example, looking at the ex-

pected magnitude of a 50-year event, the temperature increases of about 4%,

from 18.79 ◦C to 19.5 ◦C, when the CO2 emissions increase from 4.49 GtCO2 to

5.51 GtCO2. The results are consistent with the expectation that higher CO2

leads to a warmer climate, indicating that the statistical nonstationary model560

is able to model the observed physical relationship between temperature and

CO2.
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Figure 6: ProNEVA results for Application 2: Modeling temperature maxima with CO2

emissions as the physical covariate. a) Return Level curves based on a stationary model; b)

Return Level base on a nonstationary model considering CO2 emissions equal to 4.9 GtCO2.

9.3. Application 3: Modeling sea level rise with time as the covariate

The coastal city of Trieste (Italy) has been experiencing increasing sea level

height over the years (Figure S2). Given the observed trend, we investigate565

annual maxima sea level data from the Permanent Service for Mean Sea Level

(PSMSL - station ID 154) by adopting a temporal nonstationary GEV model.

The purpose of this example is to show that ProNEVA can also be used for

temporal nonstationary analysis. The location and scale parameters of the GEV

distribution are modeled as linear functions of the time-covarite. The shape570

parameter is kept constant and we use normal priors for parameter estimation.

Figure 7.b shows the return level curves for a fixed value of the time-covariate

equal to 45 years from the first observation (i.e., 45 years into the future from the

beginning of the data). The nonstationary analysis in Figure 7.b provides better

performance that the stationary model in Figure 7.a. Both the AIC and the575

BIC values confirm that the nonstationary model is the best choice to represent

sea level observations in a changing climate. The AIC for the nonstationary

model is 976.69, while it is 992.74 for the stationary model. Similarly, the

BIC for the temporal nonstationary model is 989.08, while it is 1000 for the

stationary model. Lower values for AIC and BIC indicates a superior model.580

The value of the temporal covariate should be regarded as the time at which
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Figure 7: ProNEVA results for Application 3: Modeling sea level rise with time as the co-

variate. a) Return Level curves based on a stationary model; b) Return Level base on a

nonstationary model considering equal to 45 years from the first observation; c) Expected

return level curves, i.e. ensemble medians, under stationary and nonstationary assumption;

d) Effective return period, i.e. return period as a function of the covariate, here time.

we estimate expected values of, as in this specific case, sea level. The expected

(ensemble median) nonstationary return level curves in Figure 7.c refer to three

different time at which we evaluate sea level: 45, 85, and 133 years from the first

observation. Here, 133 years from the first observation is beyond the period of585

observations (88 years) meaning that we project into the future the observed

trend and we infer from there. The observed increasing trend in the sea level

records results in increasing values of sea level for higher value of the temporal

covariate (Figure 7.c). For example, a 50 year event is equal to 7296.3 mm for

time equal to 45 years from the first observation, 7349.3 mm for 85 years, and590

7410.4 mm for 133 years. We register about 2% increase in sea level when the

time of the first observation changes from 45 to 133 years, confirming the ability
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of the nonstationary model to reproduce the increasing trend in observations.

On the contrary, the stationary analysis returns a 50-year sea level equal to

7314.3 mm regardless of the first observation. Figure 7.d shows the effective595

return level curves, which capture the variability over time (here, the covariate)

in the observed data. In the case of a nonstationary model with a temporal

covariate, it is possible to evaluate the expected waiting time (Wigley, 2009;

Olsen et al., 1998; Salas & Obeysekera, 2014), which incorporates the observed

changes in the sea level over time in the estimation of return periods. Figure600

S3 shows that the current return periods (lower x-axis) will change considering

the observed nonstationarity (upper x-asis). For example, the 100-year sea level

estimated at t0 (beginning of the simulation) turns into a 40-year event when

the observed trend over time in sea level values is taken into account.

9.4. Application 4: Modeling precipitation under a stationary assumption605

This application focuses on the Generalized Pareto (GP) distribution for

peak-over-threshold extreme value analysis. We investigate a time series of pre-

cipitation from New Orleans, Lousiana, that does not exhibit changes in statis-

tics of extremes. We obtain daily precipitation from the National Climatic Data

Center (NCDC) archive (https://www.ncdc.noaa.gov/cdo-web/ ) for the city610

of New Orleans, station GHCND:USW00012930. Given that we are interested

in heavy precipitation events, we use a GP distribution to focus on values above

a high threshold (i.e., avoid including non-extreme values). We extract precipi-

tation excesses considering a constant threshold of the 98th-percentile of daily

precipitation values (Figure S4).615

For this application we select a stationary GP model, given that we do

not have physical evidence to justify a more complex model. However, for

the sake of comparison, we perform a nonstationary analysis considering the

scale parameter as a linear function of time. Figure 8.a represents the return

level curves based on a stationary model, while Figure 8.b depicts return level620

curves for a value of the covariate (here time) equal to half of the period of

observation. From a comparison between the two models, the stationary model
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performs better. The stationary model returns values of the AIC and BIC equal

to 713.3 and 721.14, respectively. For the nonstationary model the values of the

AIC and BIC are slightly higher (715.02 and 726.79, respectively). The results625

of this example application suggests that when no evidence of changes due to a

physical process can be identified, ProNEVA favors the simplest form of model

that represents the historical observations.

Figure 8: ProNEVA results for Application 4: Modeling precipitation under a stationary

assumption. a) Return Level curves under the stationary assumption; b) Return Level curves

under the temporal nonstationary assumption for a value of the covariate within the period

of observation.

10. Conclusion

The ability to reliably estimate the expected magnitude and frequency of630

extreme events is fundamental for improving design concepts and risk assessment

methods. This is particularly important for extreme events that have significant

impacts on society, infrastructure and human lives, such as extreme precipitation

events causing flooding and landslides.

The observed increase in extreme events and their impacts reported from635

around the world have motivated moving away from the so-called stationary

approach to ensure capturing the changing properties of extremes (Milly et al.,

2008). However, there are opposing opinions and perspective on the need and

also form of suitable nonstationary models for extreme value analysis. Most of
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the existing tools for implementing extreme value analysis under the nonsta-640

tionary assumption have a number of limitations including lack of a generalized

framework for incorporating physically based covariates and estimating parame-

ters, which depend on a generic physical covariate. To address these limitations,

we propose a generalized framework entitled Process-informed Nonstationary

Extreme Value Analysis (ProNEVA) in which the nonstationarity component is645

defined by a temporal or physical-based dependence of the observed extremes on

a physical driver (e.g., change in runoff in response to urbanization, or change in

extreme temperatures in response to CO2 emissions). ProNEVA offers station-

ary and temporal and process-informed nonstationary extreme value analysis,

parameter estimation, uncertainty quantification, and a comprehensive assess-650

ment of the goodness of fit.

Here we applied ProNEVA to four different types of applications describing

change in: extreme river discharge in response to urbanization, extreme sea

levels over time, extreme temperatures in response to CO2 emissions in the

atmosphere. We have also demonstrated a peak-over-threshold approach using655

precipitation data. The results indicate that ProNEVA offers reliable estimates

when considering a physical-process or time as a covriate.

The source code of ProNEVA is freely available to the scientific community.

A graphical user inter face (GUI) version of the model, Figure 2, is also avail-

able to facilitate its applications (see Supporting Information). We hope that660

ProNEVA motivates more process-informed nonstationary analysis of extreme

events.
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